
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12, Issue 07, July 2025

48

An Adaptive PPO-based Approach for Real-Time Autoscaling

in Serverless Computing
[1] Jasmine Kaur∗, [2] Anju Bala, [3] Inderveer Chana, [4] Divyanshu Garg

[1] [2] [3] [4] Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala,

Punjab, India

Corresponding Author Email: [1] jkaur_phd20@thapar.edu, [2] anjubala@thapar.edu, [3] inderveer@thapar.edu,
[4] dgarg4_be23@thapar.edu

Abstract— Serverless computing has revolutionized cloud computing by allowing developers to build and deploy applications without

managing the underlying infrastructure. However, efficiently allocating resources to handle dynamic workloads remains a significant

challenge. This paper presents an approach for auto-scaling in serverless environments using Proximal Policy Optimization (PPO), a

reinforcement learning technique that optimizes resource allocation in real-time. Unlike previous methods that relied on Deep

Q-Learning (DQL) or Q-Learning (QL), PPO enhances stability and scalability by directly learning optimal policies. A synthetic

workload dataset is used to simulate realistic traffic patterns for model training. Experimental results on AWS Lambda demonstrate that

PPO reduces average response time by 35% compared to QL and 20% compared to DQL, ensuring faster job execution. Energy

consumption is lowered by 25% and 15%, respectively, improving efficiency. Additionally, throughput increases by 18% over QL and

10% over DQL, while success rate improves by 12% and 8%, ensuring more reliable task execution. These findings highlight PPO’s

superior effectiveness in reinforcement learning- based resource management, making it a promising solution for autoscaling in

serverless computing.

Index Terms— Serverless Computing Proximal Policy Optimization (PPO) Auto-Scaling AWS Lambda.

I. INTRODUCTION

Serverless computing eliminates the need for manual

infrastructure management by dynamically allocating

computing resources based on demand. However, handling

fluctuating workloads effectively remains a key challenge

[14]. Traditional auto-scaling techniques such as

threshold-based policies and predictive models often lead to

over-utilization or under-utilization of resources, resulting in

performance degradation and increased operational costs

[12]. Efficient dynamic resource allocation ensures optimal

system performance, scalability, and cost efficiency in

serverless environments. Reinforcement Learning (RL) has

emerged as a promising technique for dynamic resource

allocation in serverless computing. Q-Learning (QL) [26]

and Deep Q-Learning (DQL) [7] have been explored for

auto-scaling, but they suffer from instability and require

extensive training to generalize across diverse workloads. In

contrast, Proximal Policy Optimization (PPO) is a

policy-based RL method that optimizes resource allocation

more efficiently and stabilizes learning through clipped

policy updates. PPO provides better adaptability, faster

convergence, and improved scalability than traditional

value-based approaches like QL and DQL.

The motivation behind this study stems from key

challenges in serverless computing, including the need for

efficient workload management, resource optimization, and

energy-efficient scaling mechanisms. Existing approaches,

particularly QL and DQL, struggle with handling workload

fluctuations, ensuring stable learn- ing, and reducing energy

consumption. PPO addresses these limitations by

dynamically adjusting resource allocation based on real-time

workload variations, reducing execution costs, and enhancing

overall system performance. This paper compares PPO, QL,

and DQL for serverless job scheduling using synthetic work-

load data to evaluate PPO’s effectiveness. The experiments

conducted on AWS Lambda demonstrate PPO’s better

performance in execution time, response time, cost

efficiency, and energy consumption.

A. Our Contribution

The main contributions of this paper are as follows:

• A novel PPO-based framework for auto-scaling in

serverless computing that dynamically adjusts resource

allocation based on real-time workload variations.

• Use synthetic workloads to create diverse job scheduling

scenarios, ensuring robustness in performance

evaluation.

• Comparative analysis of PPO against QL and DQL,

demonstrating PPO’s superiority in execution time,

response time, cost efficiency, and resource utilization.

• Implementation and validation of the proposed approach

on AWS Lambda, showcasing its practical applicability

and effectiveness in real-world serverless environments.

The paper is organized as follows: Section 2 highlighted

research studies. Section 3 outlines the proposed framework.

Section 4 shows the experimental validation of the proposed

approach. Finally, Section 5 contains a conclusion and future

directions of the paper.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12, Issue 07, July 2025

49

II. RELATED WORK

Traditional serverless auto-scaling strategies include

threshold-based approaches [15,16,17] and predictive models

[18,19,20], which lack adaptability to real-time traffic

fluctuations. Recent studies explored reinforce- ment

learning approaches [28,21,22] such as QL and DQL,

demonstrating improved adaptability but facing convergence

and stability issues. PPO, a more advanced policy gradient

method, has shown promising results in dynamic

environments, making it an ideal candidate for serverless

workload scheduling.

III. PROPOSED FRAMEWORK

This section describes the PPO-based auto-scaling

framework as shown on Fig. 1, which dynamically allocates

resources in serverless computing environments based on

workload conditions. The framework consists of three

primary components: synthetic workload generation,

PPO-based resource allocation, and performance evaluation.

Fig. 1. Proposed Framework

A. Synthetic Workload Dataset

The synthetic workload dataset serves as the input to the

PPO model. This dataset is designed to repli- cate real-world

job scheduling scenarios with varying request arrival rates,

execution times, and resource requirements. It includes

parameters such as job arrival rate to simulate fluctuating

workloads, execution time to represent varying job

complexities, resource utilization capturing CPU and

memory requirements, and scaling constraints defining the

maximum and minimum allowable instances. This dataset

ensures that the PPO model generalizes well across different

workload patterns and can effectively adapt to dynamic

workload variations.

B. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient

reinforcement learning algorithm designed to improve

stability and efficiency in learning optimal resource

allocation strategies. PPO improves upon tra- ditional policy

gradient methods by introducing a clipped surrogate

objective function, ensuring that policy updates are gradual

and stable. This prevents drastic policy changes that can lead

to performance degrada- tion. PPO balances exploration and

exploitation by maintaining a probability ratio constraint that

prevents excessive deviations from the previous policy,

making it well-suited for dynamic environments like

serverless computing.

Algorithm 1: PPO-Based Serverless Resource Allocation

Require: Initialize policy network πθ with parameters θ,

value network Vϕ, and experience buffer

1: Observe initial state s0

2: while not converged do

3: for each episode do

4: Sample current state st

5: Select action at ∼ πθ(st)

6: Execute action, observe reward rt and next state st+1

7: Store (st, at, rt, st+1) in experience buffer 8: if buffer

is full then

9: Compute advantage estimate At using GAE

10: Update policy network πθ using PPO objective: L(θ) =

E [min (rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ) At)]

11: Update value network Vϕ using mean squared error loss

12: Clear experience buffer 13: end if

14: end for

15: end while

Algorithm 1 operates in several phases. Initially, the agent

interacts with the AWS Lambda environment, where it

observes the system state, including active instances, CPU

and memory utilization, pending requests, and job arrival

rates. Based on these observations, the agent selects an

action, which can be scaling up, scaling down, or maintaining

the current number of instances. The environment responds

with a reward based on system performance, including

execution cost, response time, and resource utilization

efficiency. The agent collects experience tuples containing

the current state, action taken, reward received, and the next

state. These experiences are stored in a buffer for policy

updates. The PPO model updates its policy using a clipped

objective function that ensures smooth updates, preventing

drastic changes that may lead to suboptimal scaling

decisions. The training process iteratively refines the

decision-making policy to optimize resource allocation and

minimize system costs while improving performance

metrics.

C. Performance Metrics

The PPO-based framework produces key performance and

energy efficiency metrics that help evaluate its effectiveness

in serverless computing. Total execution time is measured as

the cumulative time taken for job execution, ensuring

minimal delays in task completion. The average response

time is calculated to determine the system’s ability to handle

requests efficiently. Throughput, defined as the number of

successfully com- pleted jobs per unit time, highlights the

system’s ability to manage high workloads. Instance

utilization is monitored to ensure optimal resource allocation,

preventing unnecessary idle instances. Energy consumption

is analyzed to measure the total energy used by running

instances, with the goal of minimizing waste. Cost efficiency

is also evaluated, reflecting the overall expense associated

with executing serverless functions.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12, Issue 07, July 2025

50

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed

methodology for auto-scaling in serverless environments

using Deep Q-Learning (DQL), a series of experiments has

been conducted on the serverless AWS Lambda plat-form.

These experiments evaluate the scalability of the proposed

framework under complex conditions. The adaptability of the

hybrid model to varying traffic intensities, such as bursty

loads or resource-constrained scenarios, will be tested to

highlight its applicability in diverse environments. The

experiments aimed to as- sess the performance and energy

consumption benefits of our approach compared to

traditional auto-scaling methods.

A. Experimental Setup

The proposed DQL-based auto-scaling framework has

been implemented using Python and TensorFlow, integrated

with the AWS Lambda platform for deployment. The

workloads used in experiments have been taken from

serverless applications [23,24].

B. Result analysis

Fig. 2 presents a comparative study of the performance

between the Proximal Policy Optimization (PPO), Deep

Q-Learning (DQL) and Q-Learning (QL) approaches across

several key metrics in serverless comput- ing environments,

specifically in the context of job scheduling under varying

workload arrival rates. The subfigures highlight the

following metrics:

• Average Response Time: In Fig. 2a, PPO achieves the

lowest values across all job arrival rates, followed by

DQL, while QL exhibits the highest response times. For

example, at a job arrival rate of 20 requests/sec, PPO

records a response time of 1100 ms, compared to 1300 ms

for DQL and 1500 ms for QL. As the job arrival rate

increases to 100 requests/sec, PPO maintains its

advantage with a response time of 600 ms, whereas DQL

and QL record 800 ms and 900 ms, respectively.

• Energy Consumption: As shown in 2b, PPO maintains

the lowest power usage, making it the most

energy-efficient approach. At 20 requests/sec, PPO

consumes 0.013 kWh, slightly lower than DQL at 0.014

kWh and QL at 0.015 kWh. As job arrival rates increase,

PPO’s efficiency becomes more apparent, with energy

consumption reducing to 0.006 kWh at 100 requests/sec,

compared to 0.007 kWh for DQL and 0.008 kWh for QL.

• Throughput: Fig. 2c illustrates that the throughput

metric shows a steady increase as job arrival rates rise.

PPO consistently achieves the highest throughput,

followed by DQL and QL. At 20 requests/sec, PPO

handles 18 requests per second, while DQL and QL

process 17 and 16 requests per second, respec- tively. At

100 requests/sec, PPO reaches 80 reqs/sec, whereas DQL

and QL achieve 78 reqs/sec and 75 reqs/sec,

respectively., which measures the number of requests

processed per second. The throughput of both approaches

increases with the arrival rate, but GAN-DQL shows a

more consistent and efficient scaling behavior. For DQL,

throughput values are 1.18 for an arrival rate of 1.0, 1.66

for 1.5, and 1.93 for 2.0. GAN-DQL results in slight

improvements, with values of 1.19, 1.67, and 1.94.

• Success Rate: Lastly as shown in Fig. 2d, success rate,

which measures the percentage of successfully scheduled

jobs, is highest for PPO across all job arrival rates. At 20

requests/sec, PPO achieves an 89% success rate,

compared to 86% for DQL and 83% for QL. As

workloads increase to 100 requests/sec, PPO still

maintains the highest success rate at 85%, while DQL and

QL drop to 82% and 78%, respectively.

Overall, PPO consistently provides the best performance,

achieving the lowest response time and energy consumption

while maintaining the highest throughput and success rate.

DQL also demonstrates significant improvements over QL,

making it a competitive alternative. These results highlight

the effectiveness of PPO for optimizing job scheduling in

serverless computing environments.

V. CONCLUSION AND FUTURE SCOPE

This paper proposed a Proximal Policy Optimization

(PPO)–based autoscaling approach for serverless com-

puting, demonstrating its effectiveness compared to

Q-Learning (QL) and Deep Q-Learning (DQL) through

experiments on AWS Lambda. The proposed approach

dynamically optimizes resource allocation based on

workload variations, significantly enhancing system

performance and energy efficiency. Experimental results

Fig. 2. Comparison of proposed approach with existing

approaches using performance metrics a) Average Response

Time b) Energy Consumption c) Throughput d) Success Rate

show that PPO reduces average response time by 35%

compared to QL and 20% compared to DQL, ensur- ing faster

job execution. Energy consumption is lowered by 25% and

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12, Issue 07, July 2025

51

15%, respectively, improving efficiency. Additionally,

throughput increases by 18% over QL and 10% over DQL,

while success rate improves by 12% and 8%, ensuring more

reliable task execution.

The proposed approach has the following future work:

• Extending PPO-based auto-scaling to multi-agent

reinforcement learning (MARL) for further improve-

ments.

• Investigating hybrid models combining PPO with

predictive analytics for workload forecasting.

• Applying PPO in heterogeneous cloud environments

beyond AWS Lambda.

Acknowledgment: The authors would like to express their

sincere gratitude to the Centre of Excellence in Data Science

and Artificial Intelligence at Thapar Institute of Engineering

and Technology, Patiala, for providing the necessary

computational resources and support to carry out this

research.

REFERENCES

[1] Zafeiropoulos, A., Fotopoulou, E., Filinis, N.,

Papavassiliou, S.: Reinforcement learning-assisted

autoscaling mech- anisms for serverless computing

platforms. Simulation Modelling Practice and Theory 116,

102461 (2022)

[2] Kaur, J., Chana, I., Bala, A.: An autoscalable approach to

optimize energy consumption using smart meters data in

serverless computing. Science and Technology for Energy

Transition 79, 83 (2024)

[3] Mampage, A., Karunasekera, S., Buyya, R.: Deep

reinforcement learning for application scheduling in

resource- constrained, multi-tenant serverless computing

environments. Future Generation Computer Systems 143,

277–292 (2023)

[4] Yao, X., Chen, N., Yuan, X., Ou, P.: Performance

optimization of serverless edge computing function

offloading based on deep reinforcement learning. Future

Generation Computer Systems 139, 74–86 (2023)

[5] Agarwal, S., Rodriguez, M. A., Buyya, R.: A reinforcement

learning approach to reduce serverless function cold start

frequency. In: 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing

(CCGrid), pp. 797–803 (2021). IEEE

[6] Jeon, H., Shin, S., Cho, C., Yoon, S.: Deep reinforcement

learning for QoS-aware package caching in serverless edge

computing. In: 2021 IEEE Global Communications

Conference (GLOBECOM), pp. 1–6 (2021). IEEE

[7] Vahidinia, P., Farahani, B., Aliee, F. S.: Mitigating cold

start problem in serverless computing: A reinforcement

learning approach. IEEE Internet of Things Journal 10(5),

3917–3927 (2022). IEEE

[8] Tang, Q., Xie, R., Yu, F. R., Chen, T., Zhang, R., Huang, T.,

Liu, Y.: Distributed task scheduling in serverless edge

computing networks for the Internet of Things: A learning

approach. IEEE Internet of Things Journal 9(20), 19634–

19648 (2022). IEEE

[9] Birman, Y., Hindi, S., Katz, G., Shabtai, A.: Cost-effective

malware detection as a service over serverless cloud using

deep reinforcement learning. In: 2020 20th IEEE/ACM

International Symposium on Cluster, Cloud and Internet

Computing (CCGRID), pp. 420–429 (2020). IEEE

[10] Xie, R., Gu, D., Tang, Q., Huang, T., Yu, F. R.: Workflow

scheduling in serverless edge computing for the industrial

Internet of Things: A learning approach. IEEE Transactions

on Industrial Informatics (2022). IEEE

[11] Wang, H., Niu, D., Li, B.: Distributed machine learning

with a serverless architecture. In: IEEE INFOCOM 2019-

IEEE Conference on Computer Communications, pp. 1288–

1296 (2019). IEEE

[12] Jawaddi, S. N. A., Ismail, A.: Autoscaling in Serverless

Computing: Taxonomy and Open Challenges.

[13] Zhong, L.: Reinforcement Learning based Resource

Allocation Mechanisms in Serverless Clouds.

[14] Quattrocchi, G., Incerto, E., Pinciroli, R., Trubiani, C.,

Baresi, L.: Autoscaling Solutions for Cloud Applications

under Dynamic Workloads. IEEE Transactions on Services

Computing (2024). IEEE

[15] Schuler, L., Jamil, S., Kühl, N.: AI-based resource

allocation: Reinforcement learning for adaptive

auto-scaling in serverless environments. In: 2021

IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pp. 804–811

(2021). IEEE

[16] Filonis, N., Tzanettis, I., Spatharakis, D., Fotopoulou, E.,

Dimolitsas, I., Zafeiropoulos, A., Vassilakis, C., Pa-

pavassiliou, S.: Intent-driven orchestration of serverless

applications

[17] Zhang, Z., Wang, T., Li, A., Zhang, W.: Adaptive

auto-scaling of delay-sensitive serverless services with rein-

forcement learning. In: 2022 IEEE 46th Annual Computers,

Software, and Applications Conference (COMPSAC), pp.

866–871 (2022). IEEE

[18] Mahmoudi, N., Khazaei, H.: Temporal performance

modelling of serverless computing platforms. In:

Proceedings of the 2020 Sixth International Workshop on

Serverless Computing, pp. 1–6 (2020).

[19] Luo, S., Xu, H., Ye, K., Xu, G., Zhang, L., Yang, G., Xu, C.:

The power of prediction: microservice auto scaling via

workload learning. In: Proceedings of the 13th Symposium

on Cloud Computing, pp. 355–369 (2022).

[20] Phung, H.-D., Kim, Y.: A prediction based autoscaling in

serverless computing. In: 2022 13th International

Conference on Information and Communication

Technology Convergence (ICTC), pp. 763–766 (2022).

IEEE

[21] Qiu, H., Mao, W., Patke, A., Wang, C., Franke, H.,

Kalbarczyk, Z. T., Başar, T., Iyer, R. K.: SIMPPO: A

scalable and incremental online learning framework for

serverless resource management. In: Proceedings of the

13th Symposium on Cloud Computing, pp. 306–322 (2022).

[22] Yu, H., Wang, H., Li, J., Yuan, X., Park, S.-J.: Accelerating

serverless computing by harvesting idle resources. In:

Proceedings of the ACM Web Conference 2022, pp. 1741–

1751 (2022).

[23] Kim, J., Lee, K.: Functionbench: A suite of workloads for

serverless cloud function service. 2019 IEEE 12th

International Conference on Cloud Computing

(CLOUD), 502–504 (2019).

[24] Scheuner, J., Eismann, S., Talluri, S., Van Eyk, E., Abad,

C., Leitner, P., Iosup, A.: Let’s Trace It: Fine- Grained

Serverless Benchmarking using Synchronous and

Asynchronous Orchestrated Applications. arXiv preprint

arXiv:2205.07696 (2022).

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12, Issue 07, July 2025

52

[25] Huang, Y.-r., et al.: GeoPM-DMEIRL: A deep inverse

reinforcement learning security trajectory generation

framework with serverless computing. Future Generation

Computer Systems 154, 123-139 (2024).

[26] Kaur, J., Chana, I., Bala, A.: An autoscalable approach to

optimize energy consumption using smart meters data in

serverless computing. Science and Technology for Energy

Transition 79, 83 (2024).

[27] Agarwal, S., Rodriguez, M. A., Buyya, R.: A Deep

Recurrent-Reinforcement Learning Method for Intelligent

AutoScaling of Serverless Functions. IEEE Transactions on

Services Computing (2024).

[28] Mampage, A., Karunasekera, S., Buyya, R.: A deep

reinforcement learning based algorithm for time and cost

optimized scaling of serverless applications. arXiv preprint

arXiv:2308.11209 (2023).

[29] Agarwal, S., Rodriguez Read, M., Buyya, R.: On-Demand

Cold Start Frequency Reduction with Off-Policy

Reinforcement Learning in Serverless Computing.

Available at SSRN 4661993 (2023).

