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Abstract— Serverless computing has revolutionized cloud computing by allowing developers to build and deploy applications without 

managing the underlying infrastructure. However, efficiently allocating resources to handle dynamic workloads remains a significant 

challenge. This paper presents an approach for auto-scaling in serverless environments using Proximal Policy Optimization (PPO), a 

reinforcement learning technique that optimizes resource allocation in real-time. Unlike previous methods that relied on Deep 

Q-Learning (DQL) or Q-Learning (QL), PPO enhances stability and scalability by directly learning optimal policies. A synthetic 

workload dataset is used to simulate realistic traffic patterns for model training. Experimental results on AWS Lambda demonstrate that 

PPO reduces average response time by 35% compared to QL and 20% compared to DQL, ensuring faster job execution. Energy 

consumption is lowered by 25% and 15%, respectively, improving efficiency. Additionally, throughput increases by 18% over QL and 

10% over DQL, while success rate improves by 12% and 8%, ensuring more reliable task execution. These findings highlight PPO’s 

superior effectiveness in reinforcement learning- based resource management, making it a promising solution for autoscaling in 

serverless computing. 

 

Index Terms— Serverless Computing Proximal Policy Optimization (PPO) Auto-Scaling AWS Lambda. 

 

I. INTRODUCTION 

Serverless computing eliminates the need for manual 

infrastructure management by dynamically allocating 

computing resources based on demand. However, handling 

fluctuating workloads effectively remains a key challenge 

[14]. Traditional auto-scaling techniques such as 

threshold-based policies and predictive models often lead to 

over-utilization or under-utilization of resources, resulting in 

performance degradation and increased operational costs 

[12]. Efficient dynamic resource allocation ensures optimal 

system performance, scalability, and cost efficiency in 

serverless environments. Reinforcement Learning (RL) has 

emerged as a promising technique for dynamic resource 

allocation in serverless computing. Q-Learning (QL) [26] 

and Deep Q-Learning (DQL) [7] have been explored for 

auto-scaling, but they suffer from instability and require 

extensive training to generalize across diverse workloads. In 

contrast, Proximal Policy Optimization (PPO) is a 

policy-based RL method that optimizes resource allocation 

more efficiently and stabilizes learning through clipped 

policy updates. PPO provides better adaptability, faster 

convergence, and improved scalability than traditional 

value-based approaches like QL and DQL. 

The motivation behind this study stems from key 

challenges in serverless computing, including the need for 

efficient workload management, resource optimization, and 

energy-efficient scaling mechanisms. Existing approaches, 

particularly QL and DQL, struggle with handling workload 

fluctuations, ensuring stable learn- ing, and reducing energy 

consumption. PPO addresses these limitations by 

dynamically adjusting resource allocation based on real-time 

workload variations, reducing execution costs, and enhancing 

overall system performance. This paper compares PPO, QL, 

and DQL for serverless job scheduling using synthetic work- 

load data to evaluate PPO’s effectiveness. The experiments 

conducted on AWS Lambda demonstrate PPO’s better 

performance in execution time, response time, cost 

efficiency, and energy consumption. 

A. Our Contribution 

The main contributions of this paper are as follows: 

• A novel PPO-based framework for auto-scaling in 

serverless computing that dynamically adjusts resource 

allocation based on real-time workload variations. 

• Use synthetic workloads to create diverse job scheduling 

scenarios, ensuring robustness in performance 

evaluation. 

• Comparative analysis of PPO against QL and DQL, 

demonstrating PPO’s superiority in execution time, 

response time, cost efficiency, and resource utilization. 

• Implementation and validation of the proposed approach 

on AWS Lambda, showcasing its practical applicability 

and effectiveness in real-world serverless environments. 

The paper is organized as follows: Section 2 highlighted 

research studies. Section 3 outlines the proposed framework. 

Section 4 shows the experimental validation of the proposed 

approach. Finally, Section 5 contains a conclusion and future 

directions of the paper. 
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II. RELATED WORK 

Traditional serverless auto-scaling strategies include 

threshold-based approaches [15,16,17] and predictive models 

[18,19,20], which lack adaptability to real-time traffic 

fluctuations. Recent studies explored reinforce- ment 

learning approaches [28,21,22] such as QL and DQL, 

demonstrating improved adaptability but facing convergence 

and stability issues. PPO, a more advanced policy gradient 

method, has shown promising results in dynamic 

environments, making it an ideal candidate for serverless 

workload scheduling. 

III. PROPOSED FRAMEWORK 

This section describes the PPO-based auto-scaling 

framework as shown on Fig. 1, which dynamically allocates 

resources in serverless computing environments based on 

workload conditions. The framework consists of three 

primary components: synthetic workload generation, 

PPO-based resource allocation, and performance evaluation. 

 
Fig. 1. Proposed Framework 

A. Synthetic Workload Dataset 

The synthetic workload dataset serves as the input to the 

PPO model. This dataset is designed to repli- cate real-world 

job scheduling scenarios with varying request arrival rates, 

execution times, and resource requirements. It includes 

parameters such as job arrival rate to simulate fluctuating 

workloads, execution time to represent varying job 

complexities, resource utilization capturing CPU and 

memory requirements, and scaling constraints defining the 

maximum and minimum allowable instances. This dataset 

ensures that the PPO model generalizes well across different 

workload patterns and can effectively adapt to dynamic 

workload variations. 

B. Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is a policy gradient 

reinforcement learning algorithm designed to improve 

stability and efficiency in learning optimal resource 

allocation strategies. PPO improves upon tra- ditional policy 

gradient methods by introducing a clipped surrogate 

objective function, ensuring that policy updates are gradual 

and stable. This prevents drastic policy changes that can lead 

to performance degrada- tion. PPO balances exploration and 

exploitation by maintaining a probability ratio constraint that 

prevents excessive deviations from the previous policy, 

making it well-suited for dynamic environments like 

serverless computing. 

Algorithm 1: PPO-Based Serverless Resource Allocation 

Require: Initialize policy network πθ with parameters θ, 

value network Vϕ, and experience buffer  

1: Observe initial state s0 

2: while not converged do 

3: for each episode do 

4: Sample current state st 

5: Select action at ∼ πθ(st) 

6: Execute action, observe reward rt and next state st+1 

7:  Store (st, at, rt, st+1) in experience buffer 8: if buffer 

is full then 

9: Compute advantage estimate At using GAE 

10: Update policy network πθ using PPO objective: L(θ) = 

E [min (rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ) At)] 

11: Update value network Vϕ using mean squared error loss 

12:  Clear experience buffer 13: end if 

14: end for 

15: end while 

Algorithm 1 operates in several phases. Initially, the agent 

interacts with the AWS Lambda environment, where it 

observes the system state, including active instances, CPU 

and memory utilization, pending requests, and job arrival 

rates. Based on these observations, the agent selects an 

action, which can be scaling up, scaling down, or maintaining 

the current number of instances. The environment responds 

with a reward based on system performance, including 

execution cost, response time, and resource utilization 

efficiency. The agent collects experience tuples containing 

the current state, action taken, reward received, and the next 

state. These experiences are stored in a buffer for policy 

updates. The PPO model updates its policy using a clipped 

objective function that ensures smooth updates, preventing 

drastic changes that may lead to suboptimal scaling 

decisions. The training process iteratively refines the 

decision-making policy to optimize resource allocation and 

minimize system costs while improving performance 

metrics. 

C. Performance Metrics 

The PPO-based framework produces key performance and 

energy efficiency metrics that help evaluate its effectiveness 

in serverless computing. Total execution time is measured as 

the cumulative time taken for job execution, ensuring 

minimal delays in task completion. The average response 

time is calculated to determine the system’s ability to handle 

requests efficiently. Throughput, defined as the number of 

successfully com- pleted jobs per unit time, highlights the 

system’s ability to manage high workloads. Instance 

utilization is monitored to ensure optimal resource allocation, 

preventing unnecessary idle instances. Energy consumption 

is analyzed to measure the total energy used by running 

instances, with the goal of minimizing waste. Cost efficiency 

is also evaluated, reflecting the overall expense associated 

with executing serverless functions. 
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IV. EXPERIMENTS 

To evaluate the effectiveness of our proposed 

methodology for auto-scaling in serverless environments 

using Deep Q-Learning (DQL), a series of experiments has 

been conducted on the serverless AWS Lambda plat-form. 

These experiments evaluate the scalability of the proposed 

framework under complex conditions. The adaptability of the 

hybrid model to varying traffic intensities, such as bursty 

loads or resource-constrained scenarios, will be tested to 

highlight its applicability in diverse environments. The 

experiments aimed to as- sess the performance and energy 

consumption benefits of our approach compared to 

traditional auto-scaling methods. 

A. Experimental Setup 

The proposed DQL-based auto-scaling framework has 

been implemented using Python and TensorFlow, integrated 

with the AWS Lambda platform for deployment. The 

workloads used in experiments have been taken from 

serverless applications [23,24]. 

B. Result analysis 

Fig. 2 presents a comparative study of the performance 

between the Proximal Policy Optimization (PPO), Deep 

Q-Learning (DQL) and Q-Learning (QL) approaches across 

several key metrics in serverless comput- ing environments, 

specifically in the context of job scheduling under varying 

workload arrival rates. The subfigures highlight the 

following metrics: 

• Average Response Time: In Fig. 2a, PPO achieves the 

lowest values across all job arrival rates, followed by 

DQL, while QL exhibits the highest response times. For 

example, at a job arrival rate of 20 requests/sec, PPO 

records a response time of 1100 ms, compared to 1300 ms 

for DQL and 1500 ms for QL. As the job arrival rate 

increases to 100 requests/sec, PPO maintains its 

advantage with a response time of 600 ms, whereas DQL 

and QL record 800 ms and 900 ms, respectively. 

• Energy Consumption: As shown in 2b, PPO maintains 

the lowest power usage, making it the most 

energy-efficient approach. At 20 requests/sec, PPO 

consumes 0.013 kWh, slightly lower than DQL at 0.014 

kWh and QL at 0.015 kWh. As job arrival rates increase, 

PPO’s efficiency becomes more apparent, with energy 

consumption reducing to 0.006 kWh at 100 requests/sec, 

compared to 0.007 kWh for DQL and 0.008 kWh for QL. 

• Throughput: Fig. 2c illustrates that the throughput 

metric shows a steady increase as job arrival rates rise. 

PPO consistently achieves the highest throughput, 

followed by DQL and QL. At 20 requests/sec, PPO 

handles 18 requests per second, while DQL and QL 

process 17 and 16 requests per second, respec- tively. At 

100 requests/sec, PPO reaches 80 reqs/sec, whereas DQL 

and QL achieve 78 reqs/sec and 75 reqs/sec, 

respectively., which measures the number of requests 

processed per second. The throughput of both approaches 

increases with the arrival rate, but GAN-DQL shows a 

more consistent and efficient scaling behavior. For DQL, 

throughput values are 1.18 for an arrival rate of 1.0, 1.66 

for 1.5, and 1.93 for 2.0. GAN-DQL results in slight 

improvements, with values of 1.19, 1.67, and 1.94. 

• Success Rate: Lastly as shown in Fig. 2d, success rate, 

which measures the percentage of successfully scheduled 

jobs, is highest for PPO across all job arrival rates. At 20 

requests/sec, PPO achieves an 89% success rate, 

compared to 86% for DQL and 83% for QL. As 

workloads increase to 100 requests/sec, PPO still 

maintains the highest success rate at 85%, while DQL and 

QL drop to 82% and 78%, respectively. 

Overall, PPO consistently provides the best performance, 

achieving the lowest response time and energy consumption 

while maintaining the highest throughput and success rate. 

DQL also demonstrates significant improvements over QL, 

making it a competitive alternative. These results highlight 

the effectiveness of PPO for optimizing job scheduling in 

serverless computing environments. 

V. CONCLUSION AND FUTURE SCOPE 

This paper proposed a Proximal Policy Optimization 

(PPO)–based autoscaling approach for serverless com- 

puting, demonstrating its effectiveness compared to 

Q-Learning (QL) and Deep Q-Learning (DQL) through 

experiments on AWS Lambda. The proposed approach 

dynamically optimizes resource allocation based on 

workload variations, significantly enhancing system 

performance and energy efficiency. Experimental results 

 
Fig. 2. Comparison of proposed approach with existing 

approaches using performance metrics a) Average Response 

Time b) Energy Consumption c) Throughput d) Success Rate 

show that PPO reduces average response time by 35% 

compared to QL and 20% compared to DQL, ensur- ing faster 

job execution. Energy consumption is lowered by 25% and 
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15%, respectively, improving efficiency. Additionally, 

throughput increases by 18% over QL and 10% over DQL, 

while success rate improves by 12% and 8%, ensuring more 

reliable task execution. 

The proposed approach has the following future work: 

• Extending PPO-based auto-scaling to multi-agent 

reinforcement learning (MARL) for further improve- 

ments. 

• Investigating hybrid models combining PPO with 

predictive analytics for workload forecasting. 

• Applying PPO in heterogeneous cloud environments 

beyond AWS Lambda. 
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